terça-feira, 31 de janeiro de 2012

O petróleo e a química


Outrora utilizado somente para fazer argamassa, para vedação ou por suas propriedades lubrificantes e medicinais, o petróleo não era um importante produto industrial até meados do século XIX, quando seu uso como combustível para iluminação justificou o investimento em pesquisa de novas jazidas. Ao longo do século XX, porém, a importância do produto cresceu tanto que sua participação no atendimento das necessidades mundiais de energia passou de 3,7% em 1900 para cerca de cinqüenta por cento no fim do século. Fonte de energia por excelência, mas também matéria-prima para o fabrico de plásticos, tintas, tecidos sintéticos e detergentes, por exemplo, o petróleo é hoje o mais importante produto de todo o comércio internacional.
Petróleo é uma mistura complexa de hidrocarbonetos que, associada a pequenas quantidades de nitrogênio, enxofre e oxigênio, se encontra sob forma gasosa, líquida ou sólida, em poros e fraturas, em geral de rochas sedimentares. Nos depósitos encontram-se também água salgada e uma mistura de gases responsáveis pela pressão que provoca a ascensão do petróleo através de poços perfurados. O petróleo líquido é também chamado óleo cru para distingui-lo do óleo refinado, produto comercial mais importante. O gás de petróleo (gás natural) é uma mistura de hidrocarbonetos leves, enquanto as formas semi-sólidas são compostas de hidrocarbonetos pesados.
Embora de pouca utilização em estado natural, o petróleo, quando refinado, fornece combustíveis, lubrificantes, solventes, material de pavimentação e muitos outros produtos. Os combustíveis derivados do petróleo respondem por mais da metade do suprimento total de energia do mundo. Tanto pela combustão direta quanto pela geração de eletricidade, o petróleo fornece iluminação para muitos povos do mundo. Seus subprodutos são também utilizados para a fabricação de tecidos sintéticos, borracha sintética, sabões, detergentes, tintas, plásticos, medicamentos, inseticidas, fertilizantes etc. Por exigir vultosos investimentos iniciais e contínuos reinvestimentos, apenas companhias de grande porte asseguram o desenvolvimento da indústria petrolífera.
Origem e características
São controvertidas as teorias sobre a origem do petróleo. Entre as principais figuram a da origem estritamente inorgânica, defendida por Dmitri I. Mendeleiev, Marcellin Berthelot e Henri Moissan, e a teoria orgânica, que postula a participação animal e vegetal. De acordo com a primeira, o petróleo ter-se-ia formado a partir de carburetos (de alumínio, cálcio e outros elementos) que, decompostos por ação da água (hidrólise), deram origem a hidrocarbonetos como metanos, alcenos etc., os quais, sob pressão, teriam sofrido polimerização (união de moléculas idênticas para formar uma nova molécula mais pesada) e condensação a fim de dar origem ao petróleo.
Contra essa concepção, mais antiga, levanta-se a teoria orgânica, segundo a qual a presença no petróleo de compostos nitrogenados, clorofilados, de hormônios etc. pressupõe a participação de matéria orgânica de origem animal e vegetal. Em sua grande maioria, os pesquisadores modernos tendem a reconhecer como válida apenas a teoria orgânica, na qual destacam o papel representado pelos microrganismos animais e vegetais que, sob a ação de bactérias, formariam uma pasta orgânica no fundo dos mares. Misturada à argila e à areia, essa pasta constituiria os sedimentos marinhos que, cobertos por novas e sucessivas camadas de lama e areia, se transformariam em rochas consolidadas, nas quais o gás e o petróleo seriam gerados e acumulados.
Aspectos geológicos. Grande parte das ocorrências de petróleo acham-se associadas a sedimentos marinhos. Dá-se o nome de rochas geradoras (ou matrizes) àquelas onde o petróleo se originou -- em geral folhelhos escuros com alguns calcários, siltitos e arenitos finos. As rochas geradoras têm geralmente dois a dez por cento de matéria orgânica.
Ao longo do tempo geológico, ocorrem diastrofismos (deformações) na crosta terrestre que provocam dobras (anticlinais) e falhamentos das camadas sedimentares para onde migra e se acumula o óleo gerado na rocha matriz. Essas deformações das camadas sedimentares constituem as "armadilhas" (estruturas rochosas que aprisionam o óleo e o gás). Rochas ígneas não poderiam gerar petróleo por falta de matéria orgânica. Da mesma forma, o óleo e o gás não poderiam migrar ou se acumular nesse tipo de rocha, que se caracteriza pela baixa porosidade.
Aspectos químicos. O óleo cru é formado basicamente de hidrocarbonetos -- compostos de carbono e hidrogênio combinados em moléculas de disposição e tamanho diversos. As moléculas menores, com um a quatro átomos de carbono, formam os gases; moléculas maiores (de quatro a cerca de dez átomos de carbono) constituem a gasolina; moléculas ainda maiores, de até cinqüenta átomos de carbono, são as dos combustíveis leves e óleos lubrificantes; e moléculas gigantes, de até várias centenas de átomos de carbono, compõem combustíveis pesados, ceras e asfaltos. Junto aos hidrocarbonetos gasosos há apreciáveis quantidades (até 15%) de nitrogênio, dióxido de carbono e ácido sulfídrico, além de pequena porção de hélio e outros gases. Nos hidrocarbonetos líquidos em geral se encontram traços de oxigênio, enxofre e nitrogênio, na forma elementar ou combinados com as moléculas de hidrocarbonetos.
Os átomos de carbono unem-se nas moléculas de hidrocarbonetos de duas maneiras diferentes: para formar compostos em forma de anel (hidrocarboneto cíclico) ou de cadeia (hidrocarboneto acíclico ou alifático). Além disso, cada átomo de carbono pode ser completado de maneira total ou apenas parcial por átomos de hidrogênio e assim formar, respectivamente, moléculas saturadas ou não-saturadas. Os hidrocarbonetos saturados cíclicos chamam-se naftenos, e os acíclicos, parafinas; os não-saturados cíclicos chamam-se aromáticos, e os acíclicos, olefinas ou alcenos.
Aspectos físicos. O óleo cru contém milhares de compostos químicos, desde gases até materiais semi-sólidos, como asfalto e parafina. Sob grande pressão no interior da Terra, os gases estão dissolvidos nos componentes mais pesados, mas ao atingirem a superfície podem vaporizar-se. Do mesmo modo, a parafina encontra-se dissolvida no petróleo cru, do qual pode separar-se na superfície, ao resfriar.
Fisicamente, o petróleo é uma mistura de compostos de diferentes pontos de ebulição. Esses componentes dividem-se em grupos, ou frações, delimitados por seu ponto de ebulição. Os intervalos de temperatura e a composição de cada fração variam com o tipo de petróleo. As frações cujo ponto de ebulição é inferior a 200o C, entre eles a gasolina, costumam receber o nome genérico de benzinas. A partir do mais baixo ponto de ebulição, de 20o C, até o mais alto, de 400o C, tem-se, pela ordem: éter de petróleo, benzina, nafta ou ligroína, gasolina, querosene, gasóleo (óleo diesel), óleos lubrificantes. Com os resíduos da destilação produz-se asfalto, piche, coque, parafina e vaselina.
História
O petróleo era conhecido já na antiguidade, devido a exsudações e afloramentos freqüentes no Oriente Médio. No Antigo Testamento, é mencionado diversas vezes, e estudos arqueológicos demonstram que foi utilizado há quase seis mil anos. No início da era cristã, os árabes davam ao petróleo fins bélicos e de iluminação. O petróleo de Baku, no Azerbaijão, já era produzido em escala comercial, para os padrões da época, quando Marco Polo viajou pelo norte da Pérsia, em 1271.
A moderna indústria petrolífera data de meados do século XIX. Em 1850, na Escócia, James Young descobriu que o petróleo podia ser extraído do carvão e do xisto betuminoso, e criou processos de refinação. Em agosto de 1859 o americano Edwin Laurentine Drake perfurou o primeiro poço para a procura do petróleo, na Pensilvânia. O poço revelou-se produtor e a data passou a ser considerada a do nascimento da moderna indústria petrolífera. A produção de óleo cru nos Estados Unidos, de dois mil barris em 1859,  aumentou para aproximadamente três milhões em 1863, e para dez milhões de barris em 1874.
Até o final do século XIX, os Estados Unidos dominaram praticamente sozinhos o comércio mundial de petróleo, devido em grande parte à atuação do empresário John D. Rockefeller. A supremacia americana só era ameaçada, nas últimas décadas do século XIX, pela produção de óleo nas jazidas do Cáucaso, exploradas pelo grupo Nobel, com capital russo e sueco. Em 1901 uma área de poucos quilômetros quadrados na península de Apsheron, junto ao mar Cáspio, produziu 11,7 milhões de toneladas, no mesmo ano em que os Estados Unidos registravam uma produção de 9,5 milhões de toneladas. O resto do mundo produziu, ao todo, 1,7 milhão de toneladas.
Outra empresa, a Royal Dutch-Shell Group, de capital anglo-holandês e apoiada pelo governo britânico, expandiu-se rapidamente no início do século XX, e passou a controlar a maior parte das reservas conhecidas do Oriente Médio. Mais tarde, a empresa passou a investir na Califórnia e no México, e entrou na Venezuela. Paralelamente, companhias européias realizaram intensas pesquisas em todo o Oriente Médio, e a comprovação de que essa região dispunha de cerca de setenta por cento das reservas mundiais provocou uma reviravolta em todos os planos de exploração.
A primeira guerra mundial pôs em evidência a importância estratégica do petróleo. Pela primeira vez foi usado o submarino com motor diesel, e o avião surgiu como nova arma. A transformação do petróleo em material de guerra e o uso generalizado de seus derivados -- era a época em que a indústria automobilística começava a ganhar corpo -- fizeram com que o controle do suprimento se tornasse questão de interesse nacional. O governo americano passou a incentivar empresas do país a operarem no exterior.
Período entre guerras. O desmembramento do império otomano facilitou a penetração de companhias européias na região, especialmente nos territórios sob mandato e protetorado. No fim da década de 1920, a descoberta de um imenso campo petrolífero no Iraque transformou o país no segundo produtor do Oriente Médio. Em 1935, inaugurou-se o primeiro dos grandes oleodutos entre o Oriente Médio e o Mediterrâneo. A exploração daquelas áreas ampliou-se com o aumento crescente do consumo mundial e a acirrada disputa entre as grandes empresas. Foram descobertas enormes jazidas em Bahrein, na Arábia Saudita e no Kuwait.
Em 1928, a Venezuela passou a ocupar o segundo lugar entre os produtores de petróleo. No México a produção aumentou muito de 1919 a 1921, a ponto de atingir 25% do total mundial, mas depois caiu bruscamente. Em 1938, o governo mexicano expropriou as empresas estrangeiras de petróleo.
Depois de 1945. Durante a segunda guerra mundial, a demanda de petróleo atingiu proporções gigantescas, e no pós-guerra a procura pelo produto intensificou-se ainda mais. O desenvolvimento mais notável ocorreu no Oriente Médio, mas também se alcançaram resultados importantes no norte da África, no Canadá e na Nigéria. Aproximadamente a partir de 1950 manifestou-se na maioria dos países produtores uma acentuada tendência para a regulamentação rígida das concessões a empresas estrangeiras. No Irã foi desapropriada a Anglo-Iranian em 1951 e criada a National Iranian Oil Company, mas dois anos mais tarde se constituiu um consórcio de capitais anglo-franco-americanos.
Alguns países, como o Canadá e a Venezuela, adotaram o sistema de concessões de áreas limitadas. Outros optaram por permitir a exploração indiscriminada em troca do pagamento de royalties, de montante variável de uma área para outra, às vezes somado a exigências como construção de refinarias, utilização de mão-de-obra nacional etc. A política de divisão dos lucros em partes iguais entre o governo e os concessionários, aplicada na Venezuela a partir de 1943, logo foi adotada pela maioria dos países em desenvolvimento. Na Ásia, tornaram-se produtores Indonésia, Bornéu e Nova Guiné. Na América Latina, Brasil, Argentina, Colômbia, Peru e Bolívia começaram a extrair óleo de suas jazidas.
Em setembro de 1960, por iniciativa dos grandes produtores do Oriente Médio (Arábia Saudita, Irã, Iraque e Kuwait) e da Venezuela, foi fundada a Organização dos Países Exportadores de Petróleo (OPEP). Em 1973, após a quarta guerra entre árabes e israelenses, os países exportadores de petróleo decidiram tomar algumas medidas -- como reduzir quotas de produção, embargar exportações para os Estados Unidos e alguns países da Europa, triplicar os preços do óleo cru -- o que causou uma crise mundial e mostrou claramente o quanto o Ocidente dependia do petróleo dos países árabes. Desde então, os aumentos sucessivos de preços determinados pela OPEP levaram os países importadores a uma revisão de sua política energética, com controle rigoroso do consumo, utilização de fontes de energia alternativa e, quando possível, como no caso do Brasil, incremento da exploração de suas jazidas.
Em meados da década de 1990, a OPEP contava com 12 membros. Além dos cinco fundadores, filiaram-se ao organismo Indonésia, Líbia, Qatar, Argélia, Abu Dhabi, Nigéria, Equador e Gabão, os quais, juntos, controlavam dois terços das reservas mundiais. O comportamento dos preços do barril de petróleo voltou a dominar o cenário internacional em 1990, principalmente em virtude da invasão do Kuwait pelo Iraque. A incerteza gerada pelo conflito provocou uma tendência de alta do barril -- que alcançou quarenta dólares -- e uma conseqüente elevação da produção mundial. Nos anos seguintes a OPEP lutou sem sucesso para manter o preço mínimo que fixara, de 21 dólares por barril, mas que baixou a até 15 dólares.
Tecnologia
As características físicas e químicas do óleo cru, juntamente com a localização e a extensão das jazidas, são os principais fatores na determinação de seu valor como matéria-prima. O petróleo jaz oculto no fundo da terra, e nenhuma de suas propriedades físicas ou químicas permite detectá-lo com certeza da superfície. Técnicas geológicas, geofísicas e geoquímicas desenvolvidas para a exploração não fornecem prognósticos precisos sobre a existência de petróleo em determinada área e, quando muito, dão uma indicação de boas possibilidades de encontrá-lo.
Até o início do século XX, a exploração consistiu em detectar indícios de petróleo na superfície terrestre. Perfuravam-se então poços em locais de exsudações e afloramentos, ou a sua volta. A prospecção científica desenvolveu-se no começo do século XX, quando os geólogos começaram a mapear as características terrestres indicadoras de sítios favoráveis à perfuração.
Particularmente reveladores eram os afloramentos que indicavam a existência de rochas sedimentares porosas e impermeáveis alternadas. A rocha porosa (arenitos, calcários ou dolomitas) serve de reservatório para o petróleo, que nela pode migrar, sob uma diferença de pressão, através de interstícios e fendas, até o ponto de escapamento, ou seja, até o poço perfurado. As rochas impermeáveis (argila, folhelho), impedem o óleo de migrar do reservatório. No início da década de 1920, começou a exploração de subsuperfície, acompanhada da análise de sondagem (amostras retiradas do poço perfurado por sondas).
Prospecção. A partir da década de 1950, a pesquisa do petróleo começou a ser feita com técnicas geofísicas -- gravimétricas, magnetométricas e sísmicas -- que permitem mapear as estruturas de subsuperfície. O gravímetro é um instrumento sensível que mede as variações da força de gravidade provocadas, entre outros fatores, pelas diferenças de densidade das rochas. Rochas densas, quando próximas da superfície, aumentam a atração da gravidade, o que não ocorre com as rochas sedimentares, que são porosas. A técnica magnetométrica utiliza as variações do campo magnético da Terra, causadas pela existência de corpos magnéticos sob a superfície. As rochas plutônicas, que em geral contêm mais magnetita, aumentam as leituras do magnetômetro e, assim, pode-se verificar a profundidade das rochas.
Embora mais dispendiosos e complexos, os métodos sísmicos são mais precisos. Baseiam-se no fato de que ondas de choque provocadas por fontes artificiais de energia, descrevendo uma trajetória descendente, são refletidas ou refratadas pelas superfícies de contato entre as camadas. Ao retornarem à superfície, as ondas de choque são registradas por geofones (sensíveis aos ruídos subterrâneos), localizados em diferentes pontos das linhas que irradiam da fonte de energia. De acordo com o princípio de refração, as ondas de choque que atingem a superfície de contato ("horizonte") com pequeno grau de inclinação podem ser contidas e prosseguem ao longo da camada. Se a camada de rocha for particularmente densa, as ondas não serão completamente amortecidas e poderão ser observadas a vários quilômetros da fonte de energia.
A reflexão é a técnica preferida na exploração sísmica. Requer fontes de menor intensidade e menores distâncias para a instalação de geofones, pois as ondas de choque que formam um grande ângulo de incidência com a camada de rocha são refletidas para a superfície mais próxima da fonte. Tanto os meios permeáveis quanto os densos refletem as ondas de choque e fornecem, além disso, informações sobre os "horizontes" intermediários.
Métodos geoquímicos de superfície são utilizados na tentativa de descobrir a presença de acumulações de hidrocarbonetos em subsuperfície. Nesses métodos se usam análises geoquímicas a fim de detectar a presença de anomalias de hidrocarbonetos gasosos no solo, na água ou no ar. Também podem ser empregadas análises do solo a fim de localizar concentrações de bactérias que se alimentam de hidrocarbonetos gasosos provenientes das jazidas da profundidade.
Apesar dessas modernas técnicas de exploração, o único meio de se ter certeza absoluta da existência de petróleo ainda é a perfuração. Por economia de tempo e de capital, costuma-se perfurar primeiro um poço para colher informações. Análises de fragmentos das rochas colhidas revelam características físicas e químicas e são examinados por paleontólogos, que estabelecem a correlação entre os horizontes geológicos, mediante a análise de microfósseis. As jazidas ocorrem de preferência em áreas de espessos depósitos sedimentares, predominantemente de origem marinha, que sofreram deformações brandas. Nas áreas pré-cambrianas, onde predominam rochas metamórficas e ígneas, é praticamente impossível existir petróleo.
Tipos. O petróleo consiste basicamente em compostos de apenas dois elementos que, no entanto, formam grande variedade de complexas estruturas moleculares. Independentemente das variações físicas ou químicas, quase todos os petróleos variam de 82 a 87% de carbono em peso e 12 a 15% de hidrogênio. Os asfaltos mais viscosos geralmente variam de 80 a 85% de carbono e de 8 a 15% de hidrogênio.
O óleo cru pode ser agrupado em três séries químicas básicas: parafínicas, naftênicas e aromáticas. A maioria dos óleos crus compõe-se de misturas dessas três séries em proporções variáveis, e amostras de petróleo retiradas de dois diferentes reservatórios não serão completamente idênticas.
As séries parafínicas de hidrocarbonetos, também chamadas de série metano (CH4), compreendem os hidrocarbonetos mais comuns entre os óleos crus. É uma série saturada de cadeia aberta com a fórmula geral CnH2n+2, na qual C é o carbono, H é o hidrogênio e n um número inteiro. As parafinas, líquidas a temperatura normal e que entram em ebulição entre 40o e 200o C, são os constituintes principais da gasolina. Os resíduos obtidos pelo refino de parafinas de baixa densidade são ceras parafínicas plásticas e sólidas.
A série naftênica, que tem fórmula geral CnH2n, é uma série cíclica saturada. Constitui uma parte importante de todos os produtos líquidos de refinaria, mas forma também a maioria dos resíduos complexos das faixas de pontos de ebulição mais elevados. Por essa razão, a série é geralmente de maior densidade. O resíduo do processo de refino é um asfalto, e os petróleos nos quais essa série predomina são chamados óleos de base asfáltica.
A série aromática, de fórmula geral CnH2n-6, é uma série cíclica não-saturada. Seu membro mais comum, o benzeno (C6H6), está presente em todos os óleos crus, mas como uma série os aromáticos geralmente constituem somente uma pequena porcentagem da maioria dos óleos.
Além desse número praticamente infinito de hidrocarbonetos que formam o óleo cru, geralmente estão presentes enxofre, nitrogênio e oxigênio em quantidades pequenas mas muito importantes. Muitos elementos metálicos são encontrados no óleo cru, inclusive a maioria daqueles encontrados na água do mar, como vanádio e níquel. O óleo cru pode também conter pequenas quantidades de restos de material orgânico, como fragmentos de esqueletos silicosos, madeira, esporos, resina, carvão e vários outros remanescentes de vida pretérita.
Perfuração. Associado ao gás e à água nos poros da rocha, em geral o petróleo acha-se submetido a grandes pressões, de modo que a perfuração de um poço faz com que o óleo e o gás sejam impulsionados através do poço pela energia natural do reservatório. Como o gás natural que geralmente acompanha o óleo está sob forte compressão, freqüentemente fornece energia suficiente para mover o óleo das camadas porosas até as paredes do poço e, por vezes, até a superfície. Se as pressões forem insuficientes, é necessário o bombeamento para a produção de óleo.
As perfurações mais modernas são feitas por sondas rotativas, com brocas de aço de alta dureza e de diferentes tipos e diâmetros, dependentes do diâmetro do poço e da natureza da rocha que devem penetrar. Nesse processo, tem grande importância a injeção de um fluido especial, composto de argila montmorilonítica e sulfato de bário. Injetada por bomba no interior da haste rotativa de perfuração, ao retornar à superfície ela vem misturada a detritos constituídos de fragmentos das rochas atravessadas pela broca e que permitem sua análise. Além disso, esse fluido serve para lubrificar e resfriar a broca, remover os detritos formados durante a perfuração e impedir o escapamento intempestivo de gases ou óleo sob alta pressão, que pode provocar incêndios.
Transporte. Como a extração do petróleo ocorre muitas vezes em áreas distantes dos centros de consumo, seu transporte para refinarias e mercados exige sistemas complexos e especializados, como oleodutos, navios petroleiros, caminhões ou vagões-tanques. Quando se trata de longas distâncias, o meio mais barato é o navio petroleiro, cujo agigantamento tem contribuído para a redução dos custos de transporte. No transporte por terra de grandes quantidades de petróleo, os custos mais baixos se obtêm pelo uso de oleodutos, tubulações que, mediante bombeamento, levam o produto às refinarias.
Refinação. A função das refinarias consiste em dividir o óleo cru em frações (grupos) delimitadas pelo ponto de ebulição de seus componentes, e em seguida reduzir essas frações a seus diversos produtos. Quando possível, os processos de refinação são adaptados à demanda dos consumidores. Assim é que no final do século XIX, quando o querosene de iluminação era muito utilizado, as refinarias dos Estados Unidos extraíam do óleo cru até setenta por cento de querosene. Depois, quando a gasolina passou a ser o subproduto mais procurado, começou a ser retirada do óleo cru nessa porcentagem. Mais tarde, o querosene voltou a encontrar larga aplicação como combustível para aviões a jato. As refinarias localizam-se muitas vezes junto às fontes produtoras, mas também podem situar-se em pontos de transbordo ou perto dos mercados de consumo, que oferecem a vantagem da redução de custo, pois é mais econômico transportar petróleo bruto por oleodutos do que, por outros meios, quantidades menores de seus derivados.
Na refinaria, o óleo cru e os produtos semifinais e finais são continuamente aquecidos, resfriados, postos em contato com matérias não-orgânicas, vaporizados, condensados, agitados, destilados sob pressão e submetidos à polimerização (união de várias moléculas idênticas para formar uma nova molécula mais pesada) sem intervenção humana. Os processos de refino podem ser divididos em três classes: separação física, alteração química e purificação.
Separação física. A destilação, a extração de solventes, a cristalização por resfriamento, a filtração e a absorção estão compreendidas nos processos de separação física. A destilação é realizada em estruturas altas e cilíndricas chamadas torres. Depois de bombeado para os tubos de um alambique, onde é aquecido até vaporizar-se (exceto em sua porção mais pesada), o óleo cru é dispersado para uma coluna de destilação de um vaporizador localizado acima da base. Um gradiente térmico é estabelecido através da torre, de tal modo que a temperatura é mais alta na base e mais baixa no topo. Os vapores ascendentes condensam-se à medida que sobem pela torre, e os líquidos condensados juntam-se a espaços predeterminados, de onde são recolhidos. Os componentes cujo ponto de ebulição é semelhante ao da gasolina condensam-se quase no topo da torre; o querosene, logo abaixo; o óleo diesel, no meio da coluna; o resíduo, na base. Cada um desses fluxos passa então a novo estágio de processamento. Por redestilação a vácuo, o resíduo é dividido em óleos lubrificantes leves ou pesados e em combustível residual ou material asfáltico.
Alteração química. Os processos dessa classe de refino podem ter um dos seguintes objetivos: decompor, ou craquear (do inglês to crack, quebrar), grandes moléculas de hidrocarbonetos em outras menores; polimerizar ou unir pequenas moléculas de uma substância para formar outras maiores; e reorganizar a estrutura molecular. O craqueamento do óleo cru é historicamente o mais importante. No século XIX era utilizado para duplicar a quantidade de querosene que se extraía do petróleo. Com o advento do automóvel, aumentou a demanda da gasolina, e o craqueamento passou a ser usado como meio de elevar a produção desse combustível. Pelo processo de Burton, aquece-se a matéria-prima a cerca de 500o C sob pressão e obtém-se gasolina. Descobriu-se depois que a gasolina assim obtida era de melhor qualidade. A seguir foi descoberto o craqueamento catalítico, pelo qual catalisadores como a alumina, a bentonita e a sílica facilitam o rompimento das moléculas.
A polimerização é o contrário do craqueamento. Consiste na combinação de moléculas menores em moléculas de hidrocarbonetos mais pesados, visando sobretudo à obtenção de gasolina. O primeiro processo de polimerização utilizava como matérias-primas hidrocarbonetos gasosos não-saturados, principalmente o propileno e o butileno. Outro processo de polimerização, a alquilação, combina essas duas matérias-primas com o isobutano, hidrocarboneto gasoso saturado. A alquilação contribuiu grandemente para a produção de gasolina para aviação.
O terceiro tipo de processo químico é aquele que altera a estrutura das moléculas de hidrocarbonetos, a fim de aumentar o poder de combustão do produto. Em meados do século XX, as pesquisas orientaram-se, principalmente nos Estados Unidos, para apurar a qualidade da gasolina, o que foi conseguido não só com o desenvolvimento de novos processos de refinação, mas também com a introdução de um aditivo, o chumbo tetraetila. Mais tarde, porém, os compostos de chumbo foram retirados da mistura em muitos países por serem altamente poluentes.
Purificação. A terceira classe de processos de refinação compreende aqueles que purificam os produtos. Há no óleo cru muitos elementos não hidrocarbonados, principalmente enxofre, que lhe conferem propriedades indesejáveis. Vários processos foram criados para neutralizá-los ou removê-los. Por meio da hidrogenação -- processo desenvolvido por técnicos alemães para a transformação do carvão em gasolina -- as frações do petróleo são submetidas a altas pressões de hidrogênio e a temperaturas entre 26o e 538o C, em presença de catalisadores.
Distribuição. A maioria dos produtos derivados do petróleo é constituída de líquidos, na maior parte das condições estáveis, que podem ser acondicionados em tanques e bombeados de um lugar para outro. Os produtos que apresentam maiores dificuldades de manuseio são os que se encontram nas extremidades da escala de ponto de ebulição: gases, graxas, combustíveis pesados, parafinas e asfaltos. O gás liquefeito de petróleo (GLP) tem de ser armazenado e transportado sob pressão e normalmente distribuído ao consumidor em cilindros. Graxas e alguns óleos lubrificantes são acondicionados em barris e latas. Combustíveis pesados e asfaltos, que se solidificam à temperatura ambiente, têm de ser armazenados e distribuídos em recipientes aquecidos ou isolados.
Reservas mundiais. Embora os derivados do petróleo sejam consumidos no mundo inteiro, o óleo cru só é produzido comercialmente num número relativamente diminuto de lugares, e muitas vezes em áreas de deserto, pântanos e plataformas submarinas. O volume total de petróleo ainda não descoberto em terra e na plataforma continental é desconhecido, mas a indústria petrolífera desenvolveu o conceito de "reserva provada" para designar o volume de óleo e gás que se sabe existir e cuja extração é compensadora, considerados os custos e os métodos conhecidos. Conforme relatório das Nações Unidas (Ocean Oil Weekly Report, de 7 de fevereiro de 1994), que toma como base a produção média de 1991, o estoque mundial de óleo estaria esgotado em 75 anos. Das reservas atuais, 65% estão no Oriente Médio. Segundo o relatório, o volume de óleo remanescente na Terra é de 1,65 trilhões de barris, constituídos de 976,5 bilhões de barris de óleo de reserva provada e de 674 bilhões de barris de óleo. (O barril, medida habitual dos óleos, contém 159 litros. A densidade do petróleo é variável, com valor médio de 0,81, o que significa 129 quilos por barril. Um metro cúbico contém 6,3 barris, e uma tonelada, 7,5 barris).
Presume-se que ainda existam por serem descobertos cerca de 800 a 900 bilhões de barris de petróleo no mundo. No Oriente Médio, a maior parte do óleo descoberto e por descobrir encontra-se sob a terra, mas no restante do mundo o óleo potencial deverá ser encontrado na plataforma continental. (A Petrobrás e a Shell são os líderes mundiais em exploração e produção em águas profundas.) Atividades de exploração e produção estão sendo desenvolvidas nas plataformas do Brasil, golfo do México, Noruega, Reino Unido, Califórnia, Nigéria e, em menor escala, China, Filipinas e Índia. São de especial interesse os mares semifechados marginais, como mar do Norte, golfo Pérsico, mar da Irlanda, baía de Hudson, mar Negro, mar Cáspio, mar Vermelho e mar Adriático, que apresentam cortes sedimentares adequados e lâminas d'água relativamente pequenas.
Petróleo no Brasil
A primeira referência à pesquisa do petróleo no Brasil remonta ao final do século XIX. Entre 1892 e 1896, Eugênio Ferreira de Camargo instalou por conta própria, em Bofete SP, uma sonda junto ao afloramento de uma rocha betuminosa. O furo atingiu mais de 400m, mas o poço encontrou apenas água sulfurosa. Foi somente em janeiro de 1939 que se revelou a existência de petróleo no solo brasileiro, no poço de Lobato BA, perfurado pelo Departamento Nacional de Produção Mineral, órgão do governo federal. O poço de Lobato produziu 2.089 barris de óleo em 1940.
Em outubro de 1953 instituiu-se o monopólio estatal da pesquisa, lavra, refinação, transporte e importação do óleo no Brasil, pela Petrobrás (Petróleo Brasileiro S.A.), sob a orientação e a fiscalização do Conselho Nacional de Petróleo (CNP). Na década de 1950 e começo da de 1960 descobriram-se novos campos, especialmente no Recôncavo Baiano e na bacia de Sergipe/Alagoas. Também se desenvolveram pesquisas nas bacias sedimentares do Amazonas e do Paraná.
Em março de 1955, foi encontrado petróleo em Nova Olinda, no médio Amazonas. Em seguida, as atividades de perfuração estenderam-se até a bacia do Acre. Como as quantidades de petróleo obtidas não eram comerciais, após seis anos a avaliação dos resultados aconselhou a redução da exploração. Em 1967, as perfurações na bacia amazônica foram suspensas. Com os avanços tecnológicos, a Petrobrás procedeu os levantamentos geofísicos nas bacias do Paraná e do Amazonas. Alcançaram-se bons resultados, em particular descobertas de gás natural na região do rio Juruá, no alto Amazonas, a partir de 1978.
Dez anos antes, a empresa iniciara a exploração de petróleo na plataforma continental, com a descoberta de óleo no litoral de Sergipe (campo de Guaricema). Foi, porém, a crise do petróleo, iniciada em 1973, que viabilizou a prospecção em áreas antes consideradas antieconômicas. Na década de 1970, intensificou-se a exploração de bacias submersas. A identificação de petróleo na bacia de Campos, litoral do Rio de Janeiro, duplicou as reservas brasileiras. Mais de vinte campos de pequeno e médio portes foram encontrados mais tarde no litoral do Rio Grande do Norte, Ceará, Bahia, Alagoas e Sergipe. Em 1981, pela primeira vez, a produção dos campos submarinos ultrapassou a dos campos em terra. No início da década de 1980, o Brasil era, depois dos Estados Unidos, o país que mais perfurava no mar, mas, no final do século, ainda precisava importar quase a metade do petróleo que consumia, apesar de suas reservas provadas de aproximadamente 3,8 bilhões de barris (0,2% das reservas internacionais).
O refino de petróleo no Brasil começou em 1932, ao ser instalada a Destilaria Sul-Riograndense em Uruguaiana RS, com capacidade de 25m3. Em 1936 inauguraram-se duas outras refinarias: a de São Paulo, com capacidade de oitenta metros cúbicos, e a de Rio Grande RS, capaz de produzir o dobro. Em 1959, o CNP instalou em Mataripe BA a Refinaria Nacional de Petróleo, mais tarde denominada Refinaria Landulfo Alves.
Na década de 1990 a Petrobrás contava com uma fábrica de asfalto, em Fortaleza CE, e dez refinarias: Refinaria de Manaus (Reman); de Paulínia (Replan); Presidente Bernardes (RPBC); Henrique Lage (Revap); Presidente Getúlio Vargas (Repar); Alberto Pasqualini (Refap); Duque de Caxias (Reduc); Gabriel Passos (Regap); Landulfo Alves (RLAM); e Capuava (Recap). Em meados da década de 1990, o Brasil produzia cerca de 750.000 barris de petróleo por dia, com a possibilidade de aumento gradativo desse número, com a exploração de campos gigantes da bacia de Campos.
Fonte:: todos os direitos reservados à ©Encyclopaedia Britannica do Brasil Publicações Ltda.

domingo, 29 de janeiro de 2012

Plástico


O americano de origem belga Leo Hendrik Baekeland produziu, em 1909, a primeira substância plástica sintética, a baquelita. Foi o início da indústria dos plásticos, que revolucionou a vida cotidiana e criou um dos maiores problemas ambientais do fim do século XX: a eliminação do lixo plástico, que não pode ser reciclado e produz gases tóxicos ao ser incinerado.
Plástico é todo composto sintético ou natural que tem como ingrediente principal uma substância orgânica de elevado peso molecular. Em seu estado final é sólido, mas em determinada fase da fabricação pode comportar-se como fluido e adquirir outra forma. Em geral, os plásticos são materiais sintéticos obtidos por meio de fenômenos de polimerização ou multiplicação artificial dos átomos de carbono nas grandes correntes moleculares dos compostos orgânicos, derivados do petróleo ou de outras substâncias naturais. O nome plástico vem do grego plastikos, "maleável". Os polímeros, moléculas básicas dos plásticos, estão presentes em estado natural em algumas substâncias vegetais e animais como a borracha, a madeira e o couro. Há substâncias, como a celulose, que apesar de terem propriedades plásticas não se enquadram nessa categoria.
Histórico. Substâncias elásticas extraídas de resinas naturais, como a da seringueira, já eram conhecidas em certas regiões da América, Oceania e Ásia em épocas primitivas. Das crônicas de viajantes europeus medievais, como Marco Polo, constam relatos sobre a existência dessas substâncias, que foram introduzidas na Europa durante o Renascimento. Até o século XIX o aproveitamento desses materiais foi muito pequeno, mas o desenvolvimento da química permitiu seu aperfeiçoamento e o melhor aproveitamento de suas propriedades. Em 1862 o inglês Alexander Parkes criou a parquesina, o primeiro plástico propriamente dito. Sete anos mais tarde John Wesley Hyatt descobriu um elemento de capital importância para o desenvolvimento da indústria dos plásticos: a celulóide. Tratava-se de um material fabricado a partir da celulose natural tratada com ácido nítrico e cânfora, substância cujos efeitos de plastificação foram muito usados em épocas posteriores.
A fabricação dos plásticos sintéticos teve início com a produção da baquelita, no início do século XX, e registrou um desenvolvimento acelerado a partir da década de 1920. O progresso da indústria acompanhou a evolução da química orgânica que, principalmente na Alemanha, permitiu o descobrimento de muitas substâncias novas. Hermann Standinger comprovou em 1922 que a borracha se compunha de unidades moleculares repetidas, de grande tamanho, que passaram a ser chamadas de macromoléculas. Essa comprovação abriu caminho para a descoberta, antes da metade do século, dos poliestirenos, do vinil, das borrachas sintéticas e das poliuretanas e silicones, todos de amplo uso e obtidos a partir de matérias-primas vegetais e minerais.
Constituição dos plásticos. O mecanismo químico de formação dos plásticos recebe o nome de polimerização e consiste na construção de grandes cadeias de carbono, cheias de ramificações, nas moléculas de certas substâncias orgânicas. A molécula fundamental do polímero, o monômero, se repete um número elevado de vezes por meio de processos de condensação ou adição aplicados sobre o composto. Os polímeros de condensação são obtidos mediante a síntese de um conjunto de unidades moleculares, feita pela eliminação de unidades moleculares, como a água. O mecanismo de adição forma macromoléculas pela união sucessiva de unidades químicas.
Para que ocorram os processos de polimerização é necessário que seja mantida uma temperatura elevada, o que, a princípio, se consegue graças ao caráter exotérmico das reações. Esse desprendimento do calor produzido pela dinâmica interna da própria reação alimenta transformações em cadeia que diminuem, geralmente de modo espontâneo e gradual, até cessar por completo. Em algumas ocasiões se faz necessário o uso de elementos estabilizadores que impeçam reações descontroladas e explosivas. Uma vez formados, os polímeros se mantêm unidos por forças de dispersão, débeis atrações elétricas entre as moléculas e o próprio emaranhado das ramificações moleculares.
Classificação e usos. As numerosas substâncias plásticas existentes, naturais ou artificiais, são classificadas em dois grandes grupos, chamados de termoplásticos e termoestáveis devido a seu comportamento ante as variações de temperatura.
Materiais termoplásticos. Os materiais termoplásticos são substâncias caracterizadas por sua propriedade de mudar de forma sob a ação do calor, o que permite seu tratamento e moldagem por meios mecânicos. Com o resfriamento, esses materiais recuperam sua consistência inicial. Entre eles estão os derivados da celulose, os polímeros de adição e os polímeros de condensação. Os derivados da celulose são obtidos mediante a adição de substâncias ácidas ou alcalinas à celulose vegetal ou sintetizada. O polietileno, as resinas acrílicas, o vinil, o poliestireno e os polímeros de formaldeído constituem as principais variedades de polímeros de adição com propriedades termoplásticas. O cloreto de polivinila tem um grande número de aplicações, da fabricação de roupas e brinquedos a isolantes elétricos e móveis. As resinas acrílicas são obtidas do ácido acrílico e entre elas sobressai o metilmetacrilato, substância altamente transparente utilizada nas janelas de aeronaves e cujo uso na fabricação de móveis e objetos decorativos se difundiu na década de 1970.
Os poliestirenos aparecem em grande variedade e são em geral obtidos por meio da polimerização de uma resina de cor branca. Suas propriedades de dureza, transparência e brilho unidas ao alto poder como isolante elétrico os transformaram num dos materiais mais úteis na fabricação de objetos por injeção em moldes. Já os formaldeídos polimerizados possuem elasticidade e alta resistência a impactos, sendo usados na indústria automotiva e na construção. Entre os polímeros de condensação se destacam os policarbonatos e as poliamidas, como o náilon, muito usadas na indústria têxtil. Diferentes tipos de náilon, obtidos por modificações externas no comprimento das moléculas, são usados também em máquinas.
Materiais termoestáveis. Os plásticos termoestáveis se amoldam por aquecimento, mas depois de um certo tempo adquirem uma estrutura peculiar na qual endurecem rapidamente e se convertem em materiais rígidos que, se aquecidos em excesso, se carbonizam antes de recuperar a maleabilidade. As poliuretanas, reduzidas a lâminas, são usadas como isolantes térmicos e espumas de recheio em almofadas. Os aminoplásticos, como as resinas de uréia, são transparentes e resistem a pressões externas. Já os plásticos fenólicos, dos quais a baquelita é um dos tipos principais, derivam do fenol ou álcool de benzeno. Os poliésteres são fabricados habitualmente a partir de ácidos e álcoois não saturados e são usados na fabricação de tintas, fibras têxteis e películas. Quanto aos silicones, cadeias moleculares que usam átomos de silício em vez de carbono, são usados na fabricação de lâminas de alta resistência mecânica e de substâncias dielétricas. Devido à inocuidade fisiológica, são muito usados em próteses, para substituir elementos do corpo humano.
Manufatura dos plásticos. As principais fontes naturais dos plásticos são a celulose, extraída dos vegetais, o carbono e sobretudo o petróleo, o gás natural e seus derivados. Esses materiais são tratados mediante processos de craqueamento, ou ruptura química das cadeias moleculares de que são formados, na presença de catalisadores. Posteriormente, são submetidos à polimerização e outros processos de transformação. Nos processos de tratamento dos plásticos acrescentam-se a sua estrutura determinadas substâncias com a finalidade de manter suas características. Entre elas estão corpos plastificantes, que consistem normalmente de ésteres de elevado ponto de ebulição e baixa volatilidade, que melhoram sua flexibilidade ao incrustar-se nas correntes moleculares dos polímeros.   Outros aditivos freqüentes são os estabilizadores e os antioxidantes cujo uso depende do tipo de polímero que se quer obter. Também são adicionados corantes de origem mineral ou orgânica, substâncias anticombustão e elementos de recheio e reforço das cadeias de polímeros.
Existem vários métodos de fabricação de plásticos, tais como a moldagem por aquecimento em molde único, os processos de injeção a vácuo, com ação centrífuga mediante dispositivos giratórios, a termoestabilização em prensas hidráulicas e a extrusão. Este último é o método predominante na indústria e consiste na fusão e compressão da substância plástica, que é introduzida num recipiente capaz de sofrer variações dtemperatura. A extrusão também é empregada em lâminas ou películas para a obtenção de finas camadas de polietileno. O método de sopro, que consiste na introdução de ar sob pressão entre lâminas de material termoplástico, é usado na fabricação de corpos ocos.
Outros usos. Casas inteiras, feitas de plástico, já foram construídas em vários países. No Brasil a primeira foi criada em 1964 por Edgar Duvivier. Os Estados Unidos construíram, para seu pavilhão na Exposição de Osaka, no Japão, a maior bolha de plástico inflável do mundo, com 89m de largura e 155m de comprimento. Bolhas menores, feitas de polietileno, vinil ou náilon, podem ser infladas em poucas horas para uso como abrigos ou armazéns. Bolhas pequenas, do mesmo material, podem ser usadas como almofadas e até substituir camas.
Os plásticos são cada vez mais empregados na indústria automobilística e a empresa alemã BMW foi a pioneira na criação de automóveis com toda a carroçaria feita de um monobloco de plástico. A elaboração dos diversos processos de gravação e reprodução de imagem e som só se tornou possível graças ao uso de plásticos. As fitas de gravação em áudio e vídeo são feitas de polietileno. Há discos feitos de vinil e os filmes fotográficos e cinematográficos são fabricados em celulóide.
Petroquímica; Polímero Fonte: Cd digiraty

sexta-feira, 27 de janeiro de 2012

Silicone


Também chamado polissiloxano, o polímero denominado silicone tem inúmeras aplicações. Amplamente empregado na medicina como material básico de próteses, serve como agente de polimento, impermeabilização, lubrificação, vedação e outros processos. Tintas à base de silicone são altamente resistentes ao calor e à intempérie.
Silicone é qualquer polímero químico, manufaturado na forma de fluido, resina ou elastômero (borracha sintética), cuja cadeia básica é formada de átomos alternados de silício e oxigênio, de modo análogo ao dos compostos orgânicos. Por serem desprovidos de átomos de carbono em sua cadeia principal, esses polímeros não são considerados orgânicos, embora o sejam os radicais mais importantes ligados ao átomo de silício. São eles o grupo metila (-CH3) nos metil-silicones e o fenila (-C6H5) nos fenil-silicones.
Em todas as suas formas, o silicone é quimicamente inerte, resiste à decomposição pelo calor, água ou agentes oxidantes, é bom isolante elétrico e não apresenta atividade fisiológica. Usam-se fluidos de silicone como componentes de líquidos hidráulicos e na composição de antiemulsionantes. A resina de silicone é empregada como camada protetora e em vernizes com capacidade de isolamento elétrico. As próteses de silicone em forma de gel são usadas para substituir o seio de mulheres submetidas a mastectomia, ou para aumentar-lhe o volume. A segurança desse material, no entanto, ainda é objeto de controvérsia entre os médicos.
©Encyclopaedia Britannica do Brasil Publicações Ltda.

segunda-feira, 23 de janeiro de 2012

Química industrial II


A indústria química é, paradoxalmente, a melhor cliente de si própria. Um produto químico comum passa de uma fábrica a outra várias vezes antes de estar pronto para chegar ao mercado consumidor.
Indústria química é a que manufatura produtos, em grande escala, mediante o emprego de processos químicos. Suas matérias-primas principais são os combustíveis fósseis (carvão, gás natural e petróleo), água, sal, calcário, enxofre e outros materiais específicos, como fosfatos e o mineral espatoflúor. Entre os inúmeros materiais fabricados pela indústria química se incluem plásticos, detergentes, perfumes, tintas, vernizes, fertilizantes, inseticidas, além de fibras e materiais sintéticos.
Não são muito definidas as fronteiras da indústria química. A indústria petroquímica, por exemplo, é comumente considerada uma atividade separada, pois em seus primórdios, no século XIX, o petróleo cru era submetido a um simples processo de destilação. O processamento industrial moderno do petróleo, porém, envolve alterações químicas, e alguns produtos oriundos de uma refinaria moderna são, de qualquer ponto de vista, produtos químicos. Normalmente, porém, utiliza-se o termo petroquímica para descrever esses processos químicos. Também a produção de metais poderia incluir-se na indústria química, já que seus processos muitas vezes envolvem reações químicas, mas comumente se trata esse ramo separadamente como metalurgia. A produção de aço chama-se siderurgia.
Características gerais. A finalidade primordial da indústria química é a conversão de matérias-primas em produtos que, segundo seu afastamento em relação ao usuário final, podem ser primários, secundários ou terciários. Os primários são os mais afastados, mas uma das principais características da indústria química é o fato de seus produtos quase sempre exigirem processamento posterior antes de chegarem ao consumidor final. Assim se configura a situação paradoxal em que indústrias químicas assumem o papel de principais clientes de outras do mesmo ramo. Os produtos químicos passam de uma indústria a outra em diferentes estados de acabamento até chegarem finalmente ao mercado.
Ao mesmo tempo, há grande competição entre produtos similares de diferentes marcas, e até mesmo entre um mesmo material acabado, pois os custos de fabricação apresentam diferenças em função dos variados processos de elaboração. Assim, o auto-abastecimento e a acirrada competição fazem do setor químico uma indústria relativamente fechada, com canais de distribuição próprios e bem definidos.
A competitividade característica da indústria química, e dos produtos químicos, exige grandes investimentos em pesquisa. Foi graças à pesquisa que, a partir da década de 1950, uma enorme variedade de produtos que, em qualidade e variedade crescentes, ampliaram notavelmente o mercado de fertilizantes, cosméticos, desinfetantes, plásticos e medicamentos. Esse investimento se deu particularmente nos países altamente desenvolvidos, como Estados Unidos, Alemanha, Reino Unido, França, Itália e outros países europeus, líderes da fabricação mundial de produtos químicos. Na década de 1960, também o Japão surgiu como grande produtor em certas áreas.
Ramos da indústria química. A classificação dos diferentes ramos da indústria química é difícil devido ao grande alcance e à variedade de seus processos associados. Em linhas gerais, distinguem-se três grandes campos de aplicação: a indústria pesada de materiais inorgânicos, que começou no século XVIII a partir da fábrica do médico francês Nicolas Leblanc, patrocinada pelo duque de Orleans; a indústria química fina, produtora de substâncias em pequenas quantidades para fins específicos; e a indústria pesada de material orgânico (ou petroquímica), que foi separada da inorgânica a partir da década de 1960 graças à importância crescente de sua produção.
Dentro da indústria inorgânica pesada, observam-se duas subdivisões estabelecidas em função de seus produtos mais importantes: a produção de substâncias alcalinas, como o carbonato de sódio, obtido mediante o chamado processo Solvay e métodos eletrolíticos, nos quais se usam correntes elétricas de diferentes intensidades para desencadear as reações; e a fabricação de ácidos, em especial do ácido sulfúrico, que é o principal produto químico manufaturado em escala mundial.
Pela própria natureza de seus produtos, as indústrias químicas finas são orientadas para o consumidor. Dedicam-se em especial à obtenção de medicamentos, tintas e corantes. A indústria orgânica pesada trata dos produtos ligados à química do carbono, com especial atenção ao tratamento dos hidrocarbonetos aromáticos, que produz polímeros como o náilon, alguns tipos de plásticos e derivados benzênicos, e dos hidrocarbonetos de cadeia linear, entre cujos produtos se inclui o etileno, o acetileno e plásticos (aminorresinas, vinil e elastômeros).
Produtos finais e aplicações. Entre os diversos tipos de produtos manufaturados resultantes dos tratamentos realizados em indústrias químicas, destacam-se, pelas quantidades produzidas, os fertilizantes, as substâncias alcoólicas, os compostos halogenados e o ácido sulfúrico e seus derivados. Os sais de potássio, os fosfatos e os compostos de nitrogênio são excelentes adubos, usados na fertilização de campos agrícolas. Já os compostos alcoólicos, como o metanol e o etanol são usados na indústria como desinfetantes e combustíveis.
Os compostos halogenados, como o ácido clorídrico e bromídrico, são usados por sua alta capacidade reativa e podem atuar quimicamente com outras substâncias. Uso semelhante tem o ácido sulfúrico, do qual se obtêm importantes derivados.
Fonte: ©Encyclopaedia Britannica do Brasil Publicações Ltda. "Todos os direitos reservados"

sábado, 21 de janeiro de 2012

Cetonas

A acetona, representante mais comum do grupo das cetonas, é amplamente empregada como matéria-prima no fabrico de grande número de produtos industriais, como solventes, lacas e vernizes.
As cetonas são compostos orgânicos caracterizados pela presença do grupamento -C=O, carbonila, ligado a dois radicais de hidrocarbonetos. Apresentam uma fórmula geral R-C-R', onde R e R' podem ser iguais (cetonas simples ou simétricas) ou diferentes (cetonas mistas ou assimétricas); alifáticos ou aromáticos; saturados ou insaturados. R e R' também podem estar unidos. Nesse caso, compõem um ciclo (cetonas cíclicas).
Na nomenclatura vulgar, denomina-se a cetona pelos nomes dos radicais ligados à carbonila, seguidos do termo cetona. Na nomenclatura oficial, a cetona tem o nome do hidrocarboneto correspondente acrescido da terminação "ona". Para localizar a carbonila, numera-se a cadeia a partir de sua extremidade mais próxima dela. Cetonas com duas carbonilas, denominadas dicetonas, recebem a terminação "diona". Assim, por exemplo, na nomenclatura oficial, o composto CH3-CO-CH2-CH(CH3)2 é denominado 4-metilpentanona-2.
O ponto de ebulição desses compostos aumenta normalmente com o peso molecular e é superior ao dos éteres do mesmo número de carbonos. As cetonas reagem, de modo geral, como os aldeídos, diferindo apenas na velocidade das reações e na posição de equilíbrio.
As cetonas são obtidas principalmente através da oxidação de álcoois secundários; da pirólise de ácidos carboxílicos ou seus sais; da reação de cloretos de acila com compostos organocádmios; ou da síntese de Friedel e Crafts, que envolve a reação entre cloretos de acila com hidrocarbonetos aromáticos em presença do cloreto de alumínio anidro.
Além da acetona (propanona ou dimetilcetona),  outras cetonas de grande utilidade são a cicloexanona, cuja oxidação produz o ácido adípico, usado na fabricação do náilon, a benzofenona, a cânfora etc.
Fonte: internet

quarta-feira, 18 de janeiro de 2012

Acetona



Utilizada como solvente de vários compostos orgânicos e na fabricação de plásticos, lacas e vernizes, a acetona foi sintetizada pela primeira vez em 1595, pelo médico alemão Andreas Libau.
A acetona, composto químico de fórmula CH3-CO-CH3, é a primeira e a mais importante da série das cetonas alifáticas. É um líquido incolor, de cheiro bem característico, solúvel em água em todas as proporções, e de ponto de ebulição 56,5o C. Encontra-se, em pequenas quantidades, na urina e no sangue do homem e de outros animais.
O primeiro método industrial de obtenção da acetona foi a destilação destrutiva do acetato de cálcio, obtido do ácido pirolenhoso, fração líquida resultante da destilação seca da madeira. Durante a primeira guerra mundial, para obter a cordite (pólvora britânica), desenvolveu-se um processo fermentativo de produção da acetona a partir do amido, pela ação do Clostridium acetobutylicum. O etanol e o álcool n-butílico formam-se, também, durante esse processo. Atualmente, o principal método de obtenção industrial consiste na desidrogenação catalítica de isopropanol, passando-se vapores desse álcool sobre cobre aquecido ao rubro.

Fonte: todos direitos reservados ©Britannica do Brasil

sábado, 14 de janeiro de 2012

Algumas curiosidades em química

Por que as pipocas estouram?
A "explosão" de um grão de pipoca quando aquecido é o resultado da combinação de 3 características:
1. O interior do grão (endosperma) contém, além do amido, cerca de 14% de água.
2. O endosperma é um excelente condutor de calor.
3. O exterior do grão (pericarpo) apresenta grande resistência mecânica e raramente possui falhas (rachaduras).
Quando aquecido intensamente, a água no endosperma sofre vaporização, criando uma grande pressão dentro do grão. O pericarpo atua como uma panela de pressão, evitando a saída do vapor de água até que uma certa pressão limite seja atingida. Neste ponto, ocorrem duas coisas: o grão explode, com som característico (pop!) e o amido do endosperma incha abruptamente, criando aquela textura macia.
Hummm... bateu uma vontade de comer pipoca!!!
Fonte: Revista QMC Web www.qmcweb.org
Curiosidades de Química
Você pode por um bife em uma vasilha com Coca-Cola e ele desaparecerá em dois dias.
Para remover manchas em pára-choques cromados de carros antigos, esfregue a peça com um pedaço de papel alumínio amassado embebido em Coca-Cola.
A Coca-Cola é um ótimo desentupidor de pia, pois dissolve a gordura nos canos.
Os óculos ficarão brilhando se você limpar com vinagre. Uma gota em cada lente é o suficiente.
O ferro de passar roupa desliza mais facilmente sobre as roupas se você usar pasta de dente no fundo do ferro.
Para evitar cheiro na geladeira coloque uma caixa de bicarbonato de sódio aberta. Ele absorve completamente todos os odores dos alimentos guardados.
Desmistificação das frases feitas
"Nenhuma substância natural é nociva." Isso é uma grande mentira. Basta lembrar da cocaína ou da aflatoxina, uma substância produzida por fungos que é o cancerígeno mais potente que conhecemos.
"Lixo químico..." Todo lixo é químico. Resíduos de alimentos são um lixo tão químico quanto o cianeto produzido pela galvonoplastia.
"...Tal produto não tem química." Tudo tem química. Até remédios homeopáticos têm toneladas de química.
"Tudo que é sintético faz mal." A Aspirina é 100% artificial e eficaz não só contra a dor de cabeça, mas também na prevenção de problemas cardíacos.
Fonte: Livro Química Geral (Usberco Salvador) - Comentários: Prof. Atílio Vanin (Doutor em Físico-Química IQU-SC)
Como funciona o air bag dos carros?
O air bag é formado por um dispositivo que contém azida de sódio, NaN3. Este dispositivo está acoplado a um balão, que fica no painel do automóvel. Quando occore uma colisão, sensores instalados no pára-choques do automóvel e que estão ligados ao dispositivo com azida de sódio, produzem uma faísca, que aciona a decomposição do NaN3:

2NaN3(s) + O2 ® 3N2(g) + Na2O2(s)
Alguns centésimos de segundo depois, o air bag está completamente inflado, salvando vidas.
A química a bordo dos ônibus espaciais
A atmosfera
Os ônibus espaciais devem carregar tudo que necessitarão durante uma missão, desde combustível até o ar que será respirado pelos astronautas. No caso do ar, são necessários equipamentos que purifique a atmosfera dentro da nave, retirando o gás carbônico, CO2, produzido. Essa reciclagem da atmosfera é feita através de várias reações de óxido-redução.
Em missões curtas, todo o oxigênio é armazenado e não precisa ser regenerado. Somente o CO2 necessita ser removido. O dióxido de carbono é removido através de uma reação com hidróxido de lítio:

CO2(g) + 2 LiOH(s) ® Li2CO3(s) + H2O(l)
Mas por que hidróxido de lítio e não outro hidróxido de metal alcalino? Pelo fato de o hidróxido de lítio ter a menor massa molar. Um subproduto desta reação é a água, que pode ser utilizada nos sistemas de refrigeração da nave.
Em missões longas ou a bordo de estações espaciais, o oxigênio precisa ser regenerado. Um meio de se remover o gás carbônico e gerar oxigênio é a reação com superóxido de potássio:

CO2(g) + 4 KO2(s) ® 2 K2CO3(s) + 3 O2(g)
Em missões realmente muito longas, como a permanência em estações espaciais, outros processos de reciclagem de oxigênio precisam ser usados para um aproveitamento total dos recursos da nave. O dióxido de carbono pode reagir com hidrogênio, produzindo água:

CO2(g) + 2 H2(g) ® C(s) + 2 H2O(l)
O carbono produzido é utilizado em filtros para remover os odores da cabine (imagine o cheiro que deve ser dentro de um lugar onde as pessoas ficam meses trancadas e o banho é uma toalha úmida). O oxigênio e o hidrogênio podem ser gerados através da hidrólise da água:

2 H2O(l) ® 2 H2(g) + O2(g)
Para hidrolizar a água é preciso energia elétrica, que é fornecida através de painéis solares, localizados na parte externa da nave. Por este método, tudo o que é produzido é reaproveitado, aumentando a autonomia da missão.
Os combustíveis
Ao contrário dos automóveis, que são movidos pelo calor gerado dentro do motor, os veículos espaciais são movidos pelo impulso gerado pelos gases produzidos durante a combustão. E ao contrário dos automóveis, as naves precisam levar tanto o combustível quanto o oxidante. Em um ônibus espacial, aqueles dois foguetes laterais que podemos ver durante o lançamento estão cheios de combustível sólido. Esse combustível é formado por alumínio em pó (o combustível), perclorato de amônio (o agente oxidante, que também é um combustível) e óxido de ferro III (um catalisador). Estas substâncias são misturadas a um polímero e formam uma pasta, que é então injetada dentro dos tanques dos foguetes. Durante a decolagem de uma nave, uma das reações que ocorre é:

Fe2O3

3 NH4CLO4(s) + 3 Al(s)
®
Al2O3(s) + AlCl3(s) + 6 H2O(g) + 3 NO(g)
Quando estes tanques ficam vazios,cerca de 3 minutos após a decolagem, eles são ejetados e uma equipe de resgate recupera-os no mar, para utilizá-los em missões futuras.
Depois de serem ejetados, entra em operação os motores da nave e eles passam a queimar o combustível que fica armazenado naquele tanque laranja, preso embaixo do ônibus espacial. Dentro desse tanque ficam armazenados hidrogênio e oxigênio líquidos, que quando queimam produzem vapor de água:
2 H2(l) + O2(l) ® 2 H2O(g)
Nas viagens à Lua, as naves das missões Apollo usaram outros tipos de combustíveis, pois hidrogênio e oxigênio são muito efusíveis, e os motores movidos à combustíveis sólidos têm o problema de serem difíceis de desligar e religar. Eram usados então dois líquidos, uma mistura de derivados de hidrazina (predominantemente metil hidrazina) e N2O4, que quando queimavam produziam um enorme volume de gás:

4 CH3NHNH2(l) + 5 N2O4(l) ® 9 N2(g) + 12 H2O(g) + 4 CO2(g)
Os combustíveis espaciais são geralmente perigosos. A metil hidrazina é um veneno mortal e o N2O4 é muito reativo, sendo armazenado em tanque resistentes à corrosão.
Qual é o composto com o cheiro mais desagradável que existe?
Muitos compostos de enxofre com baixo peso molecular produzem reações adversas nas pessoas, mesmo se elas nunca tiveram contato com estes compostos antes, como as emissões do gambá (n-butiltiol). O ácido butanóico faz lembrar o cheiro de vômito e putricina (1,4-butanodiamina) e cadaverina (1,5-pentanodiamina) lembram a carne podre.
Do que são feitos os corretivos do tipo "branquinho"?
A composição básica do "Liquid Paper" é: óxido de titânio (responsável pela cor branca na maioria das tintas), água (solvente), etanol (solvente, contribui para que a secagem seja rápida), polímero (para dar consistência), dispersantes (para manter a mistura uniforme).
Em 1951, Bette Nesmith Graham, uma secretária norte-americana, não gostava quando tinha que corrigir com um lápis-borracha uma página datilografada, pois borrava toda a folha e tinha que datilografar tudo novamente. Observando pintores que reformavam seu escritório, ela teve a idéia de produzir uma tinta branca à base de água que pudesse ser usada na correção dos seus trabalhos datilografados.
Usando a garagem e a cozinha de casa como laboratório e fábrica, ela foi gradualmente desenvolvendo um produto que foi se tornando bastante popular. Em 1956 ela batizou-o com o nome de "Mistake Out" e ofereceu à IBM, que recusou.
Quando a demanda explodiu, ela mudou o nome para "Liquid Paper" e o patenteou e registrou. Em 1975 sua firma empregava 200 pessoas e fabricava 25 milhões de unidades de Liquid Paper, distribuídas em 31 países. Em 1979 Bette Graham vendeu a companhia para a Gillette Corporation por 47,5 milhões de dólares. Bette Graham era também a mãe de Michael Nesmith, da banda The Monkees.
Do que são feitos os adesivos que brilham no escuro?
Os adesivos que brilham no escuro geralmente são feitos com sulfeto de zinco. Quando o sulfeto de zinco é exposto à luz, graças à sua configuração eletrônica, os elétrons das camadas mais externas absorvem a luz e são excitados para camadas etetrônicas ainda mais externas. Quando apagamos a luz deixamos de fornecer energia aos elétrons, que aos poucos vão retornando às suas camadas eletrônicas iniciais. Durante esse retorno (que pode durar horas), eles devolvem a energia que absorveram na forma de luz. Esse fenômeno se chama fosforescência.
Alguns modelos de relógios têm detalhes fosforescentes que nunca perdem o brilho mesmo quando são deixados vários dias no escuro. Isso acontece porque o material fosforescente desses relógios está misturado com um pouco de material radioativo, que funciona como uma fonte de energia para provocar a fosforescência.
Além da fosforescência, existe um outro fenômeno, chamado de fluorescência. Diferentemente das substâncias fosforecentes, os compostos fluorescentes deixam de emitir luz assim que são colocados no escuro. Podemos observar a fluorescência quando vamos a uma discoteca. Todo mundo que está de roupas brancas fica "brilhando" no escuro graças as lâmpadas de luz negra, que é uma lâmpada de luz ultra-violeta. Quando a luz negra é desligada, o brilho da roupa desaparece. A nossa roupa brilha sob luz negra por causa de um aditivo dos sabões em pó que usamos. Esse aditivo é usado para termos a impressão de que a roupa está "mais branca do que branca", pois ele absorve a radiação UV e emite como uma luz azulada. Outras substâncias fluorescentes que podemos encontrar são a água tônica e a urina. É por isso que não tem luz negra nos banheiros das discotecas.
Quando a emissão de luz de uma substância é provocada por uma reação química ela recebe o nome de quimioluminescência.
Por que os cabelos ficam brancos com a idade?
     De acordo com as atuais teorias do envelhecimento, cabelos brancos surgem quando as estruturas que compõem as células se oxidam devido à ação dos radicais livres - tipos reativos de oxigênio capazes de provocar danos celulares. Os radicais livres são moléculas instáveis, com número ímpar de elétrons (partículas atômicas de carga negativa), que podem desequilibrar as funções celulares. No organismo, milhares de radicais livres, provenientes sobretudo do oxigênio (elemento vital para a transformação dos alimentos em energia) são formados e destruídos a cada minuto. A destruição é operada por antioxidantes naturais (as vitaminas C e E e as enzimas superóxido dismutase e catalase). Assim, mais de 95% do oxigênio absorvido na respiração são transformados em água no interior das células, enquanto os 5% restantes passam por outras etapas antes disso e permanecem sob a forma de radicais livres. A poluição ambiental, os maus hábitos alimentares, a vida sedentária e a própria idade contribuem para o aumento na produção dos radicais livres, que facilitam o surgimento de doenças e o envelhecimento precoce.
     Até os 40/45 anos de idade, geralmente o organismo consegue vencer a luta contra os radicais livres, retirando-os da circulação sem grandes dificuldades. Depois, contudo, eles livres tendem a se acumular gradualmente no organismo, contribuindo para o surgimento não só de cabelos brancos como de doenças degenerativas (arterioesclerose e câncer), problemas nas articulações (reumatismo e artrose) e alterações na pele (rugas e manchas senis).
     Às vezes, os cabelos embranquecem precocemente, em geral quando, além de ter predisposição genética para isso, a pessoa enfrenta problemas particulares graves. Numa situação de estresse emocional, por exemplo, o organismo libera grande quantidade de adrenalina, substância altamente oxidante que contribui para o aumento dos radicais livres na corrente sangüínea - e daí, para o surgimento de cabelos brancos.
Fonte: Globo Ciência - Novembro de 93 - Texto do geriatra e professor universitário José de Felippe Jr.

quinta-feira, 12 de janeiro de 2012

Química inorgânica,




    Campo da química que estuda as reações e propriedades dos elementos químicos e seus compostos, exceto os compostos de carbono, objeto da química orgânica.
     A química inorgânica moderna sobrepõe-se a outros campos científicos como a bioquímica, a metalurgia, a mineralogia, a química orgânica, a química física e a física de estado sólido.
     Entre os ramos da química inorgânica, figuram a química de estado sólido, que se ocupa, entre outras matérias, da química dos semicondutores; a química da cerâmica; a química de alta temperatura e pressão; a geoquímica e a química dos elementos transurânicos, dos actinídeos e dos lantanídeos ou terras-raras.
     Os compostos binários inorgânicos contêm dois elementos diferentes e recebem o nome do elemento menos metálico, com terminação em -eto seguido do nome do elemento mais metálico. Por exemplo, NaCl, cloreto de sódio. Há normas para denominar compostos mais complicados mas, em muitos casos, recebem nomes triviais ou comuns (por exemplo, Na2B4O7·10H2O, bórax) ou nomes patenteados (F(CF2) nF, teflon).
     A tabela adjunta mostra os nomes e fórmulas dos íons inorgânicos poliatômicos mais comuns. Fonte: Enciclopédia encarta

    quarta-feira, 11 de janeiro de 2012

    Análise química


    Éconjunto de técnicas e procedimentos empregados para identificar e quantificar a composição química de uma substância. Na análise qualitativa, pretende-se identificar as substâncias de uma amostra. Na quantitativa, a quantidade ou concentração de uma substância determinada. Para determinar a identidade ou quantidade de um elemento, procede-se à preparação de uma amostra (seleção de quantidade e grau de uniformidade do material necessário para a análise). Em seguida, separam-se da amostra os componentes que possam interferir no estudo. O objeto da separação é obter o componente desejado sob a forma pura, ou parcialmente pura, para sua determinação analítica.

     Posteriormente, realiza-se a análise da amostra, com base, geralmente, em uma reação química do componente, que produz uma qualidade facilmente identificável, como cor, calor ou insolubilidade.
     Os métodos de análise, baseados em instrumentos eletrônicos, exerceram grande importância nos anos cinqüenta e, atualmente, a maioria das determinações analíticas são executadas com a ajuda destes equipamentos. A cromatografia é o método de separação mais comum. A espectroscopia, o estudo das interações da radiação eletromagnética com a matéria, é o grupo de métodos instrumentais maior e mais preciso, entre os utilizados nas análises químicas e em toda a ciência.

    Um químico utiliza a cromatografia em fase líquida para analisar uma mistura complexa de substâncias. O cromatógrafo usa um meio absorvente que, ao ser colocado em contato com uma amostra, absorve seus distintos componentes a diferentes velocidades. Desta forma, separam-se os componentes de uma mistura. A cromatografia tem muitas aplicações importantes, como a determinação do nível de contaminantes no ar, a análise de medicamentos e a análise de urina e sangue.
    Fonte: enciclopédia encarta.com.br

    terça-feira, 10 de janeiro de 2012

    Símbolos e fórmulas químicas,



     Diferentes sinais abreviados, utilizados para identificar os elementos e compostos químicos no lugar de seus nomes completos. Alguns elementos freqüentes e seus símbolos são: carbono, C; oxigênio, O; nitrogênio, N; hidrogênio, H; ouro, Au; ferro, Fe.
     A maioria dos símbolos químicos são derivados das letras do nome do elemento, principalmente em latim, mas às vezes em outras línguas. A primeira letra do símbolo é escrita em maiúscula e a segunda (se existe) em minúscula. Este conjunto de símbolos que dá nome aos produtos químicos é universal.
     Quando vários elementos se combinam para formar uma molécula, indica-se a quantidade relativa de cada um por subíndices. Assim, a fórmula da água, H2O, indica que, para cada dois átomos de hidrogênio, há um átomo de oxigênio.
    Fonte: enciclopédia encarta